

INTERNATIONAL RESEARCH JOURNAL OF PHARMACY

www.irjponline.com

ISSN 2230 - 8407

Research Article

PRELIMINARY PHARMACOGNOSTICAL STANDARDIZATION OF AERIAL PARTS OF ARTEMISIA ABSINTHIUM LINN.

Ahamad Javed*, Mir Showkat R., Naguvi K. J.

Phytochemistry Research Laboratory, Department of Pharmacognosy & Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi- 110062, India

Article Received on: 14/11/11 Revised on: 29/12/11 Approved for publication: 18/01/12

ARSTRACT

Artemisia absinthium Linn. is an important medicinal plant of family Asteraceae. It is commonly known as Afsanteen. The whole plant is used in Indian traditional systems of medicine specifically indicated in chronic fever, swellings, inflammation of liver, gastric problems, enlargement of spleen, urinary disorders and for wound healing. As the herb is used widely in the Indian traditional systems of medicine, it was thought worthwhile to undertake the standardization of its aerial parts. The results of preliminary pharmacognostic standardization of aerial parts of A. absinthium are very helpful in determination of quality and purity of the crude drug and its marketed formulation.

Keywords: Artemisia absinthium, asteraceae, afsanteen, standardization.

INTRODUCTION

Artemisia absinthium Linn. (Asteraceae) is a shrubby plant having hairy and ribbed stem. It is found in Kashmir, up to an altitude of 2100 m¹. It is used to treat epilepsy, gastric problems and enlargement of spleen, urinary disorders and for wound healing^{2,3}. It shows antimicrobial and antioxidant⁴, hepatoprotective^{5,6}, anthelmintic⁷ and neuroprotective activities⁸. The characteristic bitterness of wormwood is due to the presence of sesquiterpene lactones such as absinthin, the main bitter constituent, anabsin, ketopelenolide b, and anabsinthin. Lignans, polyphenols and flavonoids are also present in A. absinthium extracts^{9,10}. Among the major components reported in its essential oil are α - and β -thujone¹¹, (Z)-epoxyocimene and chrysanthenyl acetate¹², sabinyl acetate¹³, depending on the origin of the plant. The essential oil from shade dried leaves was found to contain αthujene, α-pinene, camphene, p-cymene, 1,8-cineol, methyl heptenone, β-phelandrene, caryophylleneoxide, α-terpineol, thujyl alcohol, geraniol, thujyl acetate, caryophyllene, α -himachalene, α - cadinene and elemol^{14,15}. The present paper deals with the preliminary pharmacognostic standardization of the aerial parts of A. absinthium.

MATERIAL AND METHODS

Plant Material

The aerial parts of *Artemisia absinthium* Linn. was procured from the Khari Baoli market of Delhi and identified by Dr. M. P. Sharma, Department of Botany, Jamia Hamdard. New Delhi. A voucher specimen is deposited in the herbarium of the Phytochemistry Research Laboratory, Faculty of Pharmacy, Jamia Hamdard.

Preparation of the Hot Methanolic Extract

Areal parts of *A. absinthium* were air dried for 5-6 days in the shade. 500g of powdered aerial parts were extracted with 1.5 L of methanol using Soxhlet extraction apparatus for 4 h. The extract was filtered and the filtrate was evaporated to dryness under reduced pressure at 50 °C (yield 18.5% w/w dry weight basis) and stored at 4 °C until use.

Preliminary Phytochemical Screening of A. absinthium Extracts

The qualitative chemical tests were performed for both hot methanolic extract and hot water extract according to the methods described by Farnsworth¹⁶; with some modifications.

Presence/Absence of Polyphenolic Compounds

Two to three drops of 1% FeCl₃ solution was added to 2 ml portions (1%) of each extract. Phenolic compounds produce a deep violet color with ferric ions.

Presence/Absence of Saponins

The extract is taken in test tube with small amount of water and shaken vigorously for one minute and observed for formation of rich lather, which is stable for more than ten minutes

Presence/Absence of Flavonoids

The extract was dissolved in methanol (50 %, 1-2 mL) by heating. Then metal magnesium and 5-6 drops of conc. hydrochloride acid (HCl) were added. The solution turns red when flavonoids are present.

Presence/Absence of Steroid Glycosides

The extract was dissolved in equal volumes of acetic anhydride and CHCl₃. The mixture was transferred to a dry test tube and conc. H₂SO₄ acid was added at the bottom of the tube. Formation of a reddish brown or violet brown ring at the interface of the 2 liquids indicates presence of steroids.

Presence/Absence of Alkaloids

The alkaloids were extracted by refluxing the sample with sufficient amount of water for about 2 hr. The extract was concentrated on a rotor vapor, basified with NH₄OH and was extracted with CHCl₃ (three times). Then the content was concentrated and 2 drops were spotted separately on a thin layer chromatography (TLC) plate. After development the plate was dried, Dragendorff's reagent was sprayed onto them. Alkaloids give an orange color with Dragendorff's reagent.

TLC Fingerprint Profile

Solvent systems were developed for establishing the HPTLC pattern for the methanolic extract of *A. absinthium*. Various

^{*}E-mail: jas.hamdard@gmail.com

visualization techniques were used to come up with the best HPTLC fingerprint, like UV 254, UV 366, iodinisation and spray reagents like anisaldehyde, ninhydrin, aniline phthalate, Folin's reagent, vanillin and sulphuric acid were also tried^{17,18}. The developed plate was dried in air, visualized in UV at wavelengths 366 nm and photographed. Solvent system: Dichloromethane: acetone: formic acid (7: 2.5: 0.5)

Physico-chemical parameters of A. absinthium Aerial parts

Physicochemical parameters were determined for A. absinthium aerial parts according to methods described in WHO guidelines¹⁹.

Moisture Content

The powdered material (10 g) was placed in a moisture dish and dried to a constant weight in an oven at 100-105°C. The loss of weight (in mg/g) of air dried was calculated as follows:

% Moisture content = $\frac{\text{weight loss}}{\text{weight of sample}} \times 100$

Total Ash Content

The powdered material (2 g) was accurately weighed and placed in a crucible. The material was spread in an even layer and it was ignited to a constant weight by gradually increasing the heat to 500-600 °C until it was white indicating the absence of carbon. The residual ash was allowed to cool in a dessicator. The content of total ash (in mg/g) of air-dried material was calculated as follows:

% Total ash = $\frac{\text{weight ash}}{\text{weight of sample}}$ ×100

Acid Insoluble Ash Content

HCl (2 N; 25 mL) was added to the crucible containing the total ash, covered with a watch glass, and boiled gently for 5 min. The watch glass was rinsed with 5 mL of hot water and the rinsed contents were added to the crucible. The acid insoluble matter was collected on an ashless filter paper and washed with hot water until the filtrate was neutral. The filter paper containing acid insoluble matter was transferred to the original crucible, dried on a hot plate, and ignited to a constant weight. The residue was allowed to cool in a dessicator and weighed. The content of the acid insoluble ash (in mg/g) of air-dried material was calculated as follows:

% Acid insoluble ash = $\frac{\text{weight ash}}{\text{weight of sample}} \times 100$

Water Soluble Ash Content

Water (25 mL) was added to the crucible containing the total ash, covered with a watch glass and boiled gently for 5 min. The watch glass was rinsed with 5 ml of hot water and added to the crucible. The water insoluble matter was collected on an ashless filter paper and washed with hot water. The filter paper containing the water insoluble matter was transferred to the original crucible, dried on a hot plate, and ignited to a constant weight. The water soluble ash content was calculated using the following equation.

% Water soluble ash = $\frac{\text{total ash content-water}}{\text{insoluble residue in total ash}} \times 100$ weight of sample

Methanol Soluble Extractive Matter

Accurately weighed powdered material (4 g) was placed in a glass stoppered conical flask. Methanol (100 ml) was added to the flask and it was weighed to obtain the total weight, including the flask. Then, the flask was shaken well and allowed to stand for 1 h. A reflux condenser was attached to the flask and boiled gently for 1 h, and then it was cooled and weighed. The weight was readjusted to the original total weight by adding required amount of methanol. The flask was shaken well and filtered rapidly through a dry filter paper. After that, 25 ml of the filtrate was transferred to a tared flat bottomed dish and evaporated to dryness on a water bath. Then the dish was dried at 105 °C for 6 h and cooled in a dessicator and weighed. The content of extractable matter (in mg/g) air-dried material was calculated as follows:

% Methanol soluble extractive matter = $\frac{\text{weight of residue}}{\text{weight of sample}}$ ×4×100

Water Extractable Matter

The same procedure as described for the methanol extractable matter was followed for the determination of water extractable matter using distilled water instead of methanol.

Chloroform, DCM, Petroleum ether and Acetone soluble extractive matter

The same procedure as described for the methanol extractable matter was followed for the determination of chloroform extractable matter using distilled chloroform instead of methanol.

RESULTS

The results of standardization parameters are:

Phytochemical Screening

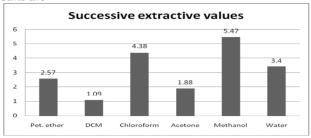
The results of preliminary phytochemical investigation of methanolic extract of *A. absinthium* showed the presence of carbohydrate, glycoside, phenolic compounds, flavonoids, saponins and sterols.

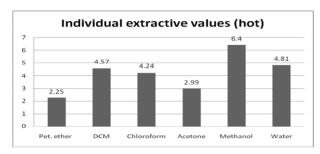
Behavior Of Powder Drugs With Different Chemical Reagents

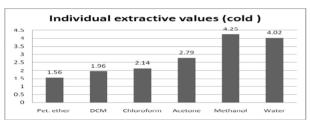
The observations are recorded in Table -I

Table -I Effect of different chemical reagents on A. absinthium

S.No.	Chemical reagents	A. absinthium
1	Iodine (I ₂)	Light Yellow
2	Glacial acetic acid	Gray
3	FeCl ₃ solution (5 %)	Light Gray
4	Lead acetate (10%)	Light Yellow
5	Picric acid	Light Yellow
6	KOH (1 %)	Light Gray
7	NaOH (5 %)	Light Yellow
8	HNO ₃ (50%)	Pink


Ash Values


The results of ash values for A. absinthium shown below



Extractive Value

The successive and individual extractive values of *A. absinthium* with different solvents have been determined and results are

Foreign Matter

The results for foreign matter are given in **Table II** for *A. absinthium*.

Table II: Foreign matter in A. absinthium aerial parts (200g)

Drugs	Wt. of Drug (g) (A)	Wt. of Drug After removal of F. M. (g) (B)	Wt. of foreign matter (g) (A- B)	% F. M.
	200.45	197.25	3.25	1.60
A. absinthium	200.68	198.50	2.18	1.90
	200.48	196.45	4.03	2.02
Mean				1.84

Moisture Content

The moisture content of aerial parts of *A. absinthium* was found to be 9.50%.

Swelling Index

No swelling was found in both A. absinthium.

Foaming Index

The foaming index was less than 100 in both A. absinthium.

HPTLC profile of methanolic extract of aerial parts of A. absinthium

Table III: Finger print profile of A. absinthium

Plant	Solvent system	Wavelength (nm)	No. of spots (R _f values)
A. absinthium	Dichloromethane: acetone: formic acid (7: 2.5: 0.5)	366	8 (0.21, 0.39, 0.47, 0.61, 0.74, 0.87)

Fig I: HPTLC Chromatogram of methanolic extract of A. absinthium at 366nm

DISCUSSION

Standardization of crude drug is an integral part of establishing its correct identity. The quantitative determination of some pharmacognostic parameters is useful for setting standards for crude drugs. Phytochemical screening revealed the presence of polyphenolic compounds, flavonoids and steroid glycosides in HME. The physicochemical analysis of plant drugs is an important for detecting adulteration or improper handling of drugs. The total ash is particularly important in the evaluation of purity and quality of drugs. The ash value was determined by 3 different methods, which measured total ash, acid insoluble ash and water soluble ash. The total ash method is employed to measure the total amount of material remaining after ignition²⁰. The total ash usually consists of carbonates, phosphates, silicates and silica, which include both physiologic ash and nonphysiologic ash. A high ash value is indicative of contamination, substitution, adulteration, or carelessness in preparing the crude drug for marketing¹⁷. Acid insoluble ash indicates contamination with silica, for example, earth and sand. Comparison of this with the total ash value of the same sample will differentiate between contaminating materials and variations of the natural ash of the drug. Water soluble ash is that part of the total ash content, which is soluble in water. It is a good indicator of the water soluble salts in the drug. Extractive values are representative of the presence of the polar or nonpolar extractable compounds in a plant material. Moisture is an inevitable component of crude drugs, which must be eliminated as far as practicable. Insufficient drying leads to spoilage by molds and bacteria and makes possible the enzymatic destruction of active principles¹⁷. HPTLC fingerprint profile will serve as a reference for quick quality control approval of the drug. All these parameters, which are being reported, could be useful in identification of distinctiveness features of the drug and also valuable in manufacturing as raw material or in prescription medicine. In conclusion, the results obtained from phytochemical screening studies and physico-chemical parameters can be used to standardize aerial parts of A. absinthium.

REFERENCES

- 1. Anonymous, Reviews on Indian Medicinal plants. 2004; 4, pp-150-157.
- Srivastava TN, Badola DP, Shah DC and Gupta OP. Ethnomedicobotanical exploration of Gurez valley in Kashmir. Bull. Med. Ethnobot. Res. 1984, 5, 15-54.

- Siddiqui MAA, Jhon AQ and Paul TM. Status of some important medicinal and aromatic plants of Kashmir Himalaya. Adv Plant Sci, 1995. 8. 134-139.
- Daise LL, Daniela SA, Celuta SA and Paul PK. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia absinthium essential oils. Phytochemistry, 2008; 69 (8), 1732-1738.
- Nurmuhammat A, Halmurat U and Biljana B. In-vivo hepatoprotective activity of the aqueous extract of Artemisia absinthium L. against chemically and immunologically induced liver injuries in mice. J. of Ethnopharmacology, 2010; 131 (2), 478-484.
- Gilani AH and Hussain KJ. Preventive and curative effects of Artemisia absinthium on acetaminophen and CCl₄-induced hepatotoxicity. Gen. Pharm. The Vas. Sys, 1995; 26 (2), 309-315.
- Tariq KA, Chishti MZ, Ahmad F and Shawl AS, Anthelmintic activity of extracts of Artemisia absinthium against ovine nematodes. Veterinary Parasitology, 2009, 160 (1-2), 83-88.
- Bora SK and Sharma A. Neuroprotective effect of Artemisia absinthium L. on focal ischemia and reperfusion-induced cerebral injury. J. of Ethnopharmacology, 2010; 129 (3), 403-409.
- Aberham A, Cicek S, Schneider P, Stuppner H. Analysis of sesquiterpene lactones, lignans and flavnoids in wormwood (Artemisia absinthium L) using high-performance liquid chromatography (HPLC)mass spectrometry, reversed phase HPLC, and HPLC-solid phase extraction-nuclear magnetic resonance. J. Agric. Food Chem, 2010; 58, 10817-10823.
- Ivanescu B, Vlase L, Corciova A, Lazar M. HPLC–DAD–MS study of polyphenols from Artemisia absinthium, A. annua, and A. vulgaris. Chem. Nat. Compd, 2010; 46, 468–470.

- Carnat AP, Madesclaire M, Chavignon O, Lamaison J.L. cis-Chrysanthenol, a main component in essential oil of Artemisia absinthium L. growing in Auvergne (Massif Central), France. J. Essent. Oil Res, 1992; 4 (5), 487–490.
- 12. Chialva F, Liddle PAP, Doglia G. Chemotaxonomy of wormwood (Artemisia absinthium L). Z. Lebensm. For, 1983; 176, 363-366.
- Karp F, Croteau R. Evidence that sabinene is an essential precursor of C
 (3)-oxygenated thujane monoterpenes. Arch. Biochem. Biophys, 1982;
 216, 616–624.
- 14. Kaul VK, Nigam SS and Banerjee AK. Thin layer and gas chromatography studies of essential oil of Artemisia absinthium Linn. Indian Perfum, 1979; 23, 1-7.
- Anne O, Amin R, Elmar A, Mati M and Tiiu K. Composition of the essential oil of Artemisia absinthium L of different geographical origin. Proc. Estonian Acad. Sci. Chem, 2006; 55 (3), 155-165.
- Farnsworth NR. Biological and Phytochemical screening of plants. J Pharm Sci. 1996; 55: 225-276.
- Mukherjee PK. Quality Control of Herbal Drugs. New Delhi, India: Business Horizons. 2002.
- Wagner H, Bladt S, Zgainsk EM. Plant drug Analysis: A thin layer chromatography Atlas, Springer, Verlag, Berlin. 1984.
- WHO. Quality control methods for medicinal plant materials. Geneva: Word Health Organization 1998
- Singh MP, Sharma CS. Pharmacognostical evaluation of Terminalia chebula fruits on different market samples. Int J Chem Tech Res. 2010; 2: 57-61

Source of support: Nil, Conflict of interest: None Declared